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Information Fusion to Defend Intentional
Attack in Internet of Things

Pin-Yu Chen, Student Member, IEEE, Shin-Ming Cheng, Member, IEEE, and Kwang-Cheng Chen, Fellow, IEEE

Abstract—Robust network design against attacks is one of the
most fundamental issues in Internet of Things (IoT) architecture
as IoT operations highly rely on the support of the underlaying
communication infrastructures. In this paper, the vulnerability
of IoT infrastructure under intentional attacks is investigated
by relating the network resilience to the percolation-based
connectivity. Intentional attacks impose severe threats on the
network operations as it can effectively disrupt a network by
paralyzing a small fraction of nodes, and therefore deteriorating
IoT operations. A fusion-based defense mechanism is proposed
to mitigate the damage caused by such attacks, where each
node feedbacks minimum (one-bit) local decision to the fusion
center for attack inference. By formulating the attack and
defense strategy as a zero-sum game, the outcome of the game
equilibrium is used to evaluate the effectiveness of the proposed
mechanism. The robustness of the Internet-oriented and the
cyber-physical system (CPS)-oriented networks are specifically
analyzed to illustrate the foundation of future IoT infrastructure.
Both analytical and empirical results show that the proposed
mechanism greatly enhances the robustness of IoT, even in the
weak local detection capability and fragile network structure
regime.

Index Terms—Attack and defense, connectivity, cyber-physical
system (CPS), machine-to-machine (M2M) communications, net-
work vulnerability, zero-sum game.

NOMENCLATURE

N Number of nodes in a network.
di Degree of node i, d1 ≥ d2 ≥ . . . ≥ dN .
D Degree of a randomly selected node.
D0 Degree of a randomly selected node in the original

network.
P (d) Degree distribution.
P0(d0) Degree distribution of the original network.
d̃max Highest degree of the remaining network.
q Fraction of removed nodes.
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qc Critical value of removed fraction for network
disruption.

q̃ Probability of a randomly selected link leading to
a deleted node.

T Set of attack strategy, T ∈ {1, 2, . . . , N}.
S Set of defense strategy, S ∈ {1, 2, . . . , N}.
t Probability distribution of the attack strategy.
s Probability distribution of the defense strategy.
Cq Cost at the network level.
Hi Hypothesis of node level defense made by node i.
HC Hypothesis of network level defense made by the

fusion center.
PD Detection probability at the node level.
PF False alarm probability at the node level.
�η′� Threshold of the fusion-based defense.
PTS Payoff matrix of the zero-sum game.
α Parameter of the Internet-oriented network.
β Parameter of the CPS-oriented network.

I. INTRODUCTION

W ITH THE advance of communication technology and
the penetration of various networking applications and

services in our daily lives, employing an ubiquitous Internet of
Things (IoT) system [1], [2] has been proposed to empower a
full-mechanical automation [such as the machine-to-machine
(M2M) communication and the smart grid], which embraces
autonomous operations and distributed computations in large-
scale networks (i.e., the network diameter increases with
the order of the network size) [3]–[8]. Generally speaking,
in addition to physical infrastructures, an IoT infrastructure
involves a communication network to collect and exchange
useful information to fully facilitate the advantages of IoT.
Despite a wide range of IoT applications and deployments,
the robustness of IoT (namely, cyber-physical security [9])
is far from realized owing to the absence of theoretical
characterizations. As the network functionality and robustness
are closely related to the network structure, the disruption
or disfunction of some devices in an IoT infrastructure may
incur disastrous threats to the operation and reliability, which
is an ever-increasing concern for the deployments of IoT
technology [10]–[13]. For instance, the U.S. Department of
Energy (DOE) has identified attack resistance to be one of
the seven major properties required for the operation of smart
grid [14].

As IoT systems are expected to operate in an autonomous
fashion, while being capable of supporting communications
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among relatively large number of machines compared with
current communication systems, the collective features of a
large-scale network of our interest can be characterized with
the aid of complex network theory [15]–[21], which provides
analytically tractable tools to investigate a network consisting
of tremendous number of nodes and intricate interconnections,
either in nature or engineered systems. The Internet and the
cyber-physical system (CPS) are considered as the typical
examples of IoT infrastructures.

From the viewpoint of a complex network, an intentional
attack is known to be quite effective in disrupting a network by
paralyzing some fraction of nodes with the highest degree [22],
[23], which is equivalent to node removals on the correspond-
ing network graph [24]. Similarly, an intentional attack incurs
fatal threats to IoT by intruding the nodes (e.g., launching
denial of service attacks on the devices) with the most physical
connections. However, owing to the network resilience of mod-
ern communication networks [19], [22], [25]–[29], a network
is expected to recover from temporal malfunctioning as long
as most of the nodes are still connected, which coincides with
the percolation phenomenon in statistic physics [30], [31].

More importantly, IoT technology indicates the possibility
of sparing tremendous investments in installing nodal defense
modules on each device provided that a robust defense mech-
anism can be implemented at the network level for attack
inference and defense reactions in order to mitigate the damage
caused by network disruption, which is particularly essential
in networks with enormous network size and stringent energy
budget. As the adversary and the defender tend to maximize
their own profits by attacking/defending a subset of nodes in
the network, and their payoffs are coupled with the resulting
network robustness, a zero-sum game [32] is naturally formed
between these two parties. The attack/defense strategies at
the game equilibrium are in general highly nontrivial, yet
they play an essential role in network robustness and defense
capability. To the best of our knowledge, this is the first series
of efforts [12], [33] that utilize the outcome of the game
equilibrium to analyze the interactions between the adversary
and the defender, where the game payoff is coupled with the
corresponding network robustness.

Considering the increasing computation capability of an
adversary, an intentional attack is more difficult to be de-
tected if the adversary is aware of the network topology and
intelligently sabotage some central nodes in the network. To
tackle intentional attacks in an IoT infrastructure, a fusion-
based defense mechanism is proposed to enhance the network
robustness. As illustrated in Fig. 1, since installing individual
defense modules on each machine may incur excessive im-
plementation costs for IoT deployment owing to its enormous
number of devices, each node simply performs local detection
via intrusion detection or anomaly detection on suspicious
activities [34]–[38] and then feedbacks minimum (one-bit)
decision to the fusion center for attack inference and defense
reactions at the network level. The fusion center launches
immediate defense reactions if an attack at the network level
is detected, otherwise it keeps surveillance on the network to
mitigate the potential damage caused by the false alarms. Note
that distinct from the traditional distributed detection scheme

Fig. 1. System model of an IoT infrastructure and the proposed fusion-based
defense mechanism. Each node feedbacks minimum (one-bit) decision to the
fusion center for attack inference and further defense reactions at the network
level. Based on the collected information, the fusion center launches defense
reactions such as nodal quarantine or reset upon the presence of the attack,
or it keeps surveillance on the network. In reality, the fusion center can be a
gateway, a data aggregator, or an intelligent machine. The adversary’s attack
strategy is to attack a subset of nodes to disrupt the network while reducing
the risks of being detected. On the other hand, the defender’s strategy is to
infer potential attacks from the feedback information. Note that this system
model can also represent a hierarchical multilevel network defense mechanism
where each node is a subfusion center in a subsystem.

where each node feedbacks a local decision for inferring of a
common event [39], the adversary can intelligently sabotage
some but not all the nodes to disrupt the network such that
the attack is not a common event to all nodes, which hinders
the precision of attack inference and thereby results in severe
threats on the network robustness. It is worth noting that
this system model can also represent a hierarchical multilevel
network defense mechanism where each node is a subfusion
center in a subsystem.

This paper specifically analyzes the network robustness of
the Internet-oriented network and the CPS-oriented network
(smart grid as the representative case [40]), as these two
networks possess distinct topological features, and they are
the foundation of future IoT infrastructures owing to their
maturity and well-developed communication protocols. It is
worth mentioning that the proposed framework can be used
to evaluate the network robustness of any large-scale IoT
infrastructure when the corresponding network parameters are
specified. In addition, both analytical results and empirical data
extracted from the real-world large-scale networks support
that the fusion-based defense mechanism is quite efficacious
against intentional attacks, even with weak local detection
capability and inherently fragile network structure. This paper,
therefore, offers novel avenues to the theoretical analysis and
network robustness enhancement for IoT.

This paper is organized as follows. Section II elucidates
the related works. The percolation-based connectivity and the
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impacts of node removal on an arbitrary network are intro-
duced in Section III. The attack strategy, defense mechanism,
and network resilience are specified in Section IV. The
vulnerabilities of the Internet-oriented network and the CPS-
oriented network are discussed in Section V. In Section VI,
we formulate the fusion-based defense mechanism via optimal
data fusion approaches and solve the detection threshold for
attack inference at the network level. Due to the competing
nature between the adversary and the defender, the interactions
among the two parties are formulated as a zero-sum game to
evaluate the effectiveness of the proposed fusion-based defense
mechanism in Section VII. In Section VIII, the performance of
the proposed mechanism is presented by deploying the mecha-
nism on synthetic network models and empirical network data.
Finally, Section IX concludes this paper.

II. RELATED WORKS

Network vulnerability to attack is a fundamental security
issue in IoT [10], [41]. An attack on IoT infrastructure
can be categorized into two types according to its purpose:
1) manipulation attack and 2) disruption attack. Manipulation
attacks take advantage of the communication vulnerabilities to
manipulate the measurements or decisions in IoT, such as the
emulation attacks in cognitive radio networks [42], Byzantine
attacks in spectrum sensing [43], sybil attacks in open-access
distributed systems [44], and data injection attacks in smart
grid [45]. Kosut et al. investigated the impacts of the number
of meters under manipulation on the attack observability and
specified the smallest set of meters sufficient for the adversary
to control the smart grid [46]. Kim and Poor [47] demonstrated
that it is possible to defend against malicious data injection
if a small subset of measurements can be made immune to
the data injection attacks. Although manipulation attack may
impose severe threats on IoT, the damage is often limited to
revenue loss or performance degradation.

In contrast to fraudulently manipulating the system state
estimators without deteriorating the system’s functionality,
disruption attacks aim to paralyze IoT operations by launching
denial of service attacks [48] to jam the entire system [49]. An
intentional attack takes a more progressive approach to disrupt
a network by paralyzing a set of nodes with the highest degree
and incurring the disintegration of the entire system. Albert
et al. [22] first showed that a power-law distributed network
is quite tolerant to random node failures (removals), while it is
very fragile to selective removals. In [25], Cohen et al. studied
the resilience of the Internet to random breakdowns, and they
proposed an analytical model to evaluate the critical value for
the network breakdown under an intentional attack in [50].
Solé et al. [51] analyzed the topology and robustness of the
European power grids under an intentional attack. Moreover,
Xiao et al. [23] verified that intentional attack is the most fatal
attack to disrupt the network when the network topology is
known to the adversary. Our previous results focus on network
resilience in scale-free complex networks [33].

It is worth mentioning that the aforementioned research on
intentional attacks mainly focuses on the inherent network
resilience to an intentional attack and no further defense

mechanisms are considered in the literature. However, from
an engineering point of view, with the support of IoT and
the advance of the anomaly/intrusion detection techniques,
the damage caused by an intentional attack can be greatly
mitigated via our proposed fusion-based defense mechanism
with minimum (one-bit) feedback from each node. Moreover,
by formulating the interactions between the adversary and the
defender as a two-player zero-sum game with its game payoff
coupled by the network resilience, the game equilibrium and
the resulting optimal attack/defense strategies are far from
being realized.

The main contributions of this paper are summarized as
follows.

1) By relating the network resilience to the percolation-
based connectivity [30], the critical value of an arbitrary
network to remain connection in percolation sense after
removing the targeted nodes is introduced. This critical
value is associated with the fragility of IoT infrastructure
under an intentional attack.

2) A fusion-based defense mechanism is proposed to miti-
gate the damage caused by an intentional attack. The
proposed defense mechanism requires only minimum
(one-bit) local decision from each node to reduce the
additional communication overheads and computation
complexity.

3) Given the percolation-based connectivity of an IoT
infrastructure, the competing nature of the adversary
and the defender is formulated as a zero-sum game,
where the game payoff is coupled with the correspond-
ing network robustness, and the outcome of the game
equilibrium is used to evaluate the performance of
the proposed defense mechanism, which quantizes the
network robustness in a precisely defined manner.

4) Considering the Internet-oriented network and the CPS-
oriented network, we analyze the critical value for the
percolation-based connectivity under intentional attacks
as these networks possess distinct topological features
and they are the foundation of future IoT infrastructure.

5) By implementing the fusion-based defense mechanism
on the Internet router-level topology and the European
power grid, both analytical results and empirical network
data show that the proposed mechanism greatly enhances
the network robustness to prevent IoT infrastructure
from disruption.

III. PERCOLATION-BASED CONNECTIVITY

AND NODE REMOVAL

A. Percolation-Based Connectivity

In large-scale networks with enormous number of nodes,
considering full connectivity to collect information from all
nodes and edges may not be practically feasible. For exam-
ple, we could exploit the second smallest eigenvalue of the
Laplacian matrix [52] of a network to determine the existence
of full connectivity at the cost of generating tremendous
computation overheads. Therefore, in large-scale networks, we
would like to only consider if the largest component in the
network is able to maintain the main operation of the entire
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system. From this perspective, the characterization of network
connectivity corresponds to the investigation for the properties
of the largest connected component (giant component) [17],
[18], [24]. It is suggested that percolation theory be useful
for the analysis of connectivity in large-scale networks owing
to its tractability and engineering interpretations. For instance,
percolation theory is used to study the sensor coverage prob-
lem in IoT [53] and interference analysis in wireless networks
[54]. Nonetheless, in case of small-scale networks, the critical
value to sustain percolation-based connectivity can be obtained
by exhaustively running experimental trials, and thereby, it can
be applied to the fusion-based defense mechanism.

According to the seminal work in [55], given a degree
distribution P (d) of an arbitrary network, a giant component
containing the majority of the nodes exists if the degree dis-
tribution satisfies the condition

∑
d d(d− 2)P (d) > 0, which

is equivalent to

E[D2]

E[D]
=

var(D) + (E[D])2

E[D]
> 2 (1)

where D ∈ [dmin, dmax] is the random variable representing
the degree of a randomly selected node with probability
distribution function P (d), and dmin (dmax) is the smallest
(largest) degree of the network. The first observation for (1)
is that if we fix the average number of links (degrees), a
network with larger degree variance is prone to possess a
giant connected component since a node with extremely high
degree is more likely to occur in such a network. The second
observation for (1) is that in order to guarantee the existence
of a giant component, we are interested in the case that the
highest degree increases with the order of the network size and
it is sufficiently large such that the degree variance diverges
eventually, which we refer as the large-scale network limit.

B. Random Node Removal

Following [25], [50], given the original degree distribution
P0(d0), the new degree distribution of the network after
randomly removing q fraction of nodes (the links emanating
from the nodes are removed as well) is

P (d) =

dmax∑
d0=d

P0(d0)

(
d0
d

)
(1− q)dqd0−d. (2)

Applying (2) to (1), the criterion for the percolation-based
connectivity after random node removal becomes

θ � E[D2]

E[D]
=

(1− q)2E[D0
2] + q(1− q)E[D0]

(1− q)E[D0]
= 2. (3)

Reorganizing (3), we obtain the critical threshold qc for
percolation as

qc = 1− 1

θ0 − 1
(4)

where θ0 � E[D0
2]

E[D0]
is calculated from the original degree

distribution. The critical value qc is an important indicator
of the network robustness, since it means that a network with
original degree distribution P0(d0) will be disintegrated into
many small components once we randomly remove more than
qc fraction of nodes from the network.

C. Targeted Node Removal

In addition to random node removal, if the q fraction of
nodes with the highest degree is removed from a network con-
sisting of N nodes, the cutoff degree (the highest degree in the
remaining network) is reduced to some value d̃max < dmax,
and it can be evaluated from

dmax∑
d=˜dmax+1

P (d) =

∞∑
d=˜dmax+1

P (d)− 1

N
= q (5)

with the relation
∑∞

dmax
P (d) = 1

N , and the fact that the q
fraction of nodes with the highest degree are removed from
the network such that

∑dmax

d=˜dmax+1
P (d) = q.

Since targeted node removal disconnects the links emanat-
ing from the removed nodes to the remaining nodes, removing
the q fraction of nodes with the highest degree results in
the change of degree distribution. For an arbitrary node, the
deletion probability q̃ of a randomly selected link leading
to a deleted node equals the ratio of the number of links
belonging to the deleted nodes to the number of links, i.e.,
q̃ =

∑dmax

d=˜dmax+1

dP (d)
E[D0]

[50], [56] due to the fact that a node

with higher degree has more chance to be deleted. Conse-
quently, the critical value for percolation-based connectivity
under targeted node removal can be obtained from (4) by
replacing qc and dmax with q̃c and d̃max as removing q fraction
of nodes with the highest degree is equivalent to removing q̃
fraction of nodes randomly.

IV. SYSTEM MODEL

Suppose there are N nodes in the network sorted in de-
scending degree order, i.e., d1 ≥ d2 ≥ . . . ≥ dN . Based on the
anomaly/intrusion detection techniques of each node, every
node feedbacks a local decision to the fusion center for attack
inference and further defense reactions. Upon validation of the
attack at the network level, the fusion center takes immediate
reaction (e.g., nodal quarantine) on the suspicious nodes
reporting the presence of attack. Without loss of generality,
we assume that there is only one fusion center in the network.
Nonetheless, this work can be extended to a multistage hier-
archical network structure composed of several autonomous
fusion centers when distributed computation mechanisms are
involved, which will be considered as our future works. In IoT,
the fusion center can be a gateway, a data aggregator or an
intelligent machine. For clear reading, the notations throughout
this paper are summarized in the Nomenclature.

A. Intentional Attack

We consider the worst-case scenario that the adversary
knows the complete topological information (degree of every
node) of the network and it is capable of sabotaging all the
nodes simultaneously. The attack strategy of an adversary is
to sabotage T ∈ {1, 2, . . . , N} nodes in descending degree
order, where T = N refers to an undifferentiated attack or
an uniform attack, while T < N contributes to an intentional
attack on T nodes with the highest degree. The attack on the
ith node is in vain if the fusion center detects the presence
of the attack and takes immediate reaction such as nodal
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quarantine or reset on the ith node. Intuitively, a uniform
attack is an inadequate strategy for the adversary at the risk
of exposed activity, whereas an intentional attack is more
effective since it makes the most use of the network topology
to achieve its aim, and in the meanwhile, it is more difficult to
be detected at the network level by paralyzing a small fraction
of nodes with the highest degree.

B. Node Level Defense: Local Detection

Since the a priori probability of launching an attack and
the impacts of nodal defense (e.g., a node turns off its
operations once an attack is detected on its side) on the overall
network robustness are unknown at the node level, each node
employs Neyman–Pearson criterion for hypothesis testing with
detection probability PDi

and false alarm probability PFi
.

Hi = 1 denotes the hypothesis that ith node is under attack,
otherwise Hi = 0. For simplicity, we assume every node
possesses identical anomaly/intrusion detection capability, i.e.,
PDi

= PD and PFi
= PF . Based on the local detection, every

node feedbacks one-bit information ui to the fusion center for
attack inference and defense reactions, where ui = 1 if the ith
node declares that it is under attack, otherwise ui = −1.

C. Network Level Defense: Surveillance and Quarantine

Regarding the defense strategy at the network level, the
fusion center infers the presence of an attack by keeping
surveillance on the local decisions from S ∈ {1, 2, . . . , N}
nodes in descending degree order. Since the impacts of nodal
quarantines on the network robustness are known at the
network level while the a priori probability of attack is
still unknown, a binary hypothesis testing based on minimax
criterion is employed at the fusion center to minimize the
potential cost, where HC = 1 if attack occurs in the network,
otherwise HC = 0. The fusion center quarantines the nodes
which feedback the local decision ui = 1 when HC = 1,
or it declares a null attack and keeps surveillance on the
network. Note that if the defense at the network level is
not considered, the optimal strategy for the adversary is to
launch an undifferentiated attack to sabotage as many nodes
as possible to disrupt the network.

D. Network Resilience

By relating the network resilience to the percolation-based
connectivity, one is able to characterize the network robustness
of an arbitrary network for quantitative analysis. Considering
the resilience of an IoT infrastructure and the critical value
to sustain percolation-based connectivity under intentional
attacks, we define the cost at the network level as

Cq =

{
1, if q > qc
−1, if q ≤ qc.

(6)

The resilience of IoT infrastructure is determined by analyzing
the critical value qc to sustain percolation-based connectivity.
The network transitions from the connected phase to the
disconnected phase if more than qc fraction of nodes are
paralyzed. Note that the cost of erroneous node quarantine due

to false attack alarm is identical to the role of node removal
since immediate reaction is taken by the fusion center once
the attack is detected at the network level.

V. INTENTIONAL ATTACK ON CANONICAL NETWORKS

Due to the facts that the Internet and the CPS are probably
the largest man-made engineering networks in the world, in
this section, we specifically investigate the damage caused by
intentional attacks on the synthetic network models of the
Internet router-level topology and the CPS. These two types
of networks are known to possess quite distinct topological
features, and they are very likely to be the foundation of future
IoT infrastructure owing to their mature deployments and well-
developed communication protocols.

A. Internet-Oriented Network

For an Internet-oriented network, the degree distribution
follows a power-law distribution [57]

P (d) = c1 · d−α, d = dN , dN−1, . . . , d1 (7)

with exponent α and normalization coefficient c1. A power-law
distributed network is also renowned as a scale-free network
[17], [18] when 2 ≤ α ≤ 3 since its second and higher-order
moments of the degree distribution are usually divergent.

By relaxing the degree d to be real-valued, we have the
continuous approximation in the large-scale network limit
(d1 → ∞) as c1 = 1−α

d1−α
1 −d1−α

N

d1→∞
= (α− 1)dα−1

N for α > 1

because of the power-law distribution. By relaxing the degree
to be real-valued, substituting (7) into (5) and integrating
(5), we obtain the relation between the cutoff degree after
intentional attacks and the fraction of removed nodes as

d̃max = dN

(
q +

1

N

) 1
1−α

. (8)

When the size of the network is huge, the critical value
for percolation-based connectivity can thus be evaluated as

qc
N→∞
=

(
˜dmax

dN

)1−α

. Moreover, removing q fraction of nodes
with the highest degree is equivalent to the probability q̃ of
reaching a removed node by following a randomly selected
link as discussed in Section III-C, where

q̃ =

d1∑
d=˜dmax

dP (d)

E[D0]

d1→∞
=

(
d̃max

dN

)2−α

= q
2−α
1−α (9)

for α > 2. Note that q̃ → 1 as α → 2 suggests that a power-
law-distributed network with exponent α < 2 is very vul-
nerable to intentional attacks since removing only a few
nodes is able to disrupt the entire network. Applying the

result to (3) with θ0 =
(

2−α
3−α

)
d3−α
1 −d3−α

N

d2−α
1 −d2−α

N

, the cutoff degree

after intentional attacks is obtained by solving the following
equation(

d̃max

dN

)2−α

− dN

(
2− α

3− α

)⎡⎣( d̃max

dN

)3−α

− 1

⎤⎦− 2 = 0.

(10)
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Fig. 2. Robustness of the two network prototypes under intentional attacks.
(a) Internet-oriented network. The degree distribution follows a power-law
distribution with the power-law exponent α, i.e., P (d) ∼ d−α. (b) CPS-
oriented network. The degree distribution follows an exponential distribution

with the exponential exponent β, i.e., P (d) ∼ 1
β
e
− d

β .

The critical value for percolation-based connectivity under

intentional attacks is thus qc =
(

˜dmax

dN

)1−α

for α > 2.

As demonstrated in Fig. 2 (a), a power-law-distributed
network is very vulnerable to intentional attacks such that
paralyzing a small fraction of nodes with the highest degree
contributes to network disruption. As α increases, the size of
the giant component becomes smaller due to weak connectivity
[22], [50], and it leads to the decline in qc. The decline in qc as
α → 2 is explained by the critically high degree of just a few
nodes. Note that it has been validated in [50] that the large-
scale network limit assumption has negligible impacts on the
accuracy of the critical value provided that the network size
is large enough. Roughly speaking, the rate of convergence
depends on the underlaying network topology and most of
the datasets have extremely large number of nodes such that
running experimental trials on these datasets to obtain the
exact critical values are highly infeasible and intractable. In
addition, in case of time-varying network topology, we can
update the degree distribution of a network and recalculate qc.

B. CPS-Oriented Network

For CPS, particularly the smart grid, the degree distribution
follows an exponential distribution [51]

P (d) = c2 · e− d
β , d = dN , dN−1, . . . , d1 (11)

with an exponent β and normalization coefficient c2. Similarly,
by continuous approximation at the large-scale network limit,

we have c2
d1→∞
= 1

β e
dN
β , and from (5), the relation between

the cutoff degree after intentional attacks and the fraction of
removed nodes is

d̃max = −β ln

(
q +

1

N

)
+ dN . (12)

The probability of reaching a removed node following a
randomly selected link is

q̃ =
exp

(
dN

β

)
dN + β

·
(
d̃max + β

)
exp

(
− d̃max

β

)
. (13)

If dN is negligible, (13) can be simplified as q̃
dN→0
=[

1− ln
(
q + 1

N

)] (
q + 1

N

)
. Applying the result to (3) with

θ0 = 2β, the critical value for percolation-based connectivity
can be obtained by solving the equation[

1− ln

(
qc +

1

N

)](
qc +

1

N

)
= 1− 1

2β − 1
. (14)

As demonstrated in Fig. 2(b), the critical value qc increases
with the exponent β, since larger β indicates that the network
is more strongly connected, and the adversary has to sabotage
more nodes to successfully disintegrate the network.

VI. FUSION-BASED DEFENSE ANALYSIS

In addition to the inherent vulnerability of an IoT infrastruc-
ture, the attack inference at the fusion center plays an essential
role in enhancing the network robustness and mitigating the
damage caused by intentional attacks. In the proposed defense
mechanism, the fusion center infers the presence of the attack
based on the collected one-bit feedback from each node.
Leveraging optimal fusion rule [58], [59], let u =

∑S
i=1 aiui

denote the observation obtained at the fusion center when
keeping S nodes with the highest degree under surveillance,
where

ai =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log

(
PD

PF

)
, if ui = 1

log

(
1− PF

1− PD

)
, if ui = −1

(15)

is the optimal weighted coefficient for data fusion. The like-
lihood ratio test (LRT) at the fusion center is

u
HC=1

≷
HC=0

η (16)

for some threshold η. Since the fusion center infers the
presence of the attack based on the local decisions of S nodes
with the highest degree, adopting the k-out-of-n decision rule
as consistent with [58], [59], (16) can be written as

k

(
log

[
PD(1− PF )

PF (1− PD)

])
HC=1

≷
HC=0

η + S log

(
1− PF

1− PD

)
(17)

where k out of S nodes report attacks. Without loss of
generality, we assume PD > PF so that (17) becomes

k
HC=1

≷
HC=0

(
log

[
PD(1− PF )

PF (1− PD)

])−1{
η + S log

(
1− PF

1− PD

)}
� η′ (18)

and k, therefore, has a binomial distribution BIN(S, PD)
when HC = 1 and BIN(S, PF ) when HC = 0.
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Let Cxy denotes the cost when the event is HC = x while
the decision is HC = y at the fusion center. Regarding the
defense cost at the network level, we set C00 = C11 = 0 and
C01 = CF = C10 = CM = Cq . The cost of false alarm CF

is identical to the cost of miss detection CM , since erroneous
node quarantine may also lead to network disruption. Adopting
minimax criterion and randomized decision rule with prob-
ability ε at the network level, η′ can be solved by setting
PC
M = PC

F [60], where PC
M (PC

F ) is the probability of miss
detection (false alarm) at the fusion center. We have

�η′�−1∑
k=0

P (k = k | HC = 1) + (1− ε)P (k = �η′� | HC = 1)

= εP (k = �η′� | HC = 0) +
S∑

k=�η′�+1

P (k = k | HC = 0)

(19)

where �η′� is the greatest integer that is smaller or equal to
η′, since k is a discrete random variable.

Let F (k;n, p) denote the cumulative distribution function
(CDF) of k ∼ BIN(n, p), we have

F (k;n, p) = P (k ≤ k)

= I1−p(n− k, k + 1)

= (n− k)

(
n

k

)∫ 1−p

0

tn−k−1(1− t)kdt (20)

where Iz(a, b) =
B(z;a,b)
B(a,b) is the regularized incomplete

beta function, B(z; a, b) =
∫ z

0
ta−1(1− t)b−1dt is the in-

complete beta function, and B(a, b) = B(1, a, b) =
∫ z

0
ta−1

(1− t)b−1dt is the complete beta function. With (20), (19)
can be rewritten as

F (�η′� − 1;S, PD) + (1− ε)P (k = �η′� | HC = 1)

= εP (k = �η′� | HC = 0) + 1− F (�η′�;S, PF ). (21)

Consequently, given S and (20), the threshold �η′� can be
obtained by solving the following equation

(S − �η′�+ 1)

(
S

�η′� − 1

)∫ 1−PD

0

tS−�η′�(1− t)�η
′�−1dt

+(1− ε)

(
S

�η′�
)
P

�η′�
D (1− PD)S−�η′�

= ε

(
S

�η′�
)
P

�η′�
F (1− PF )

S−�η′� + 1− (S − �η′�)
(

S

�η′�
)

×
∫ 1−PF

0

tS−�η′�−1(1− t)�η
′�dt. (22)

The relation between the threshold �η′� and the number
of nodes with the highest degree under surveillance (S) is
shown in Fig. 3. The threshold has a linear scalability with
respect to the number of nodes with the highest degree under
surveillance, and higher false alarm probability contributes to
larger �η′� in order to minimize the potential cost introduced
by erroneous node quarantine. A direct observation from Fig. 3
is that higher false alarm probability tends to benefit the
adversary since the adversary is prone to disrupt the network

Fig. 3. Threshold �η′� with respect to S for network level defense with
different (PD, PF ) configurations. N = 1000 and ε = 0.5. The threshold
has a linear growth with the number of nodes with the highest degree under
surveillance. The threshold increases with the false alarm probability for attack
inference at the network level in order to minimize the overall cost.

without being detected at the fusion center if the threshold is
too high. It is, therefore, of crucial importance for the defender
to determine the optimal value of S against intentional attacks
so that the damage of network disruption can be minimized.

VII. GAME-THEORETIC ANALYSIS

With the network resilience described in Section IV-D,
an intentional attack on an IoT infrastructure is regarded as
effective if the adversary sabotages at least �Nqc� nodes
with the highest degree to disrupt the network without being
detected by the fusion center (i.e., HC = 0). As derived in
Section VI, the fusion center declares a null attack (HC = 0)
if less than �η′� nodes with the highest degree report that they
are under attack simultaneously. More interestingly, since the
threshold �η′� increases linearly with the increase in S as
shown in Fig. 3, if the fusion center knows the adversary’s
strategy T (the number of nodes with the highest degree
under attack), the fusion center manages to adjust its defense
strategy (the number of nodes with the highest degree under
surveillance) to smaller S in order to detect the attack with
high precision. On the other hand, if the adversary knows
the defender’s strategy S and the detection capability PD

at the node level, the adversary tends to sabotage as many
nodes as possible provided that the fusion center regards the
abnormal feedbacks as a null attack and takes no reaction
on the suspicious nodes. There is clearly a tradeoff between
the attack strategy and the defense strategy among these two
parties, and the effectiveness of the defense mechanism can
be evaluated by analyzing the network robustness at the stable
state (game equilibrium), where both the adversary and the
defender simultaneously choose its optimal strategy against
each other to maximize their own payoffs, and the payoff of
each player cannot be improved via unilateral change in its
own strategy at the game equilibrium.
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Fig. 4. Probability of an adversary to disrupt IoT infrastructure with respect
to the attack strategy T and the defense strategy S. N = 1000, qc = 0.01,
PD = 0.9, PF = 0.01, and ε = 0.5. An intentional attack in the resilient
region turns out to be in vain, since it fails to sabotage enough nodes to
paralyze the entire network owing to the network resilience. In this case, the
adversary has to attack at least �N · qc� = 10 nodes to disrupt the network
with nonzero probability.

For the purpose of demonstration, Fig. 4 displays the
probability for an adversary to successfully disrupt an IoT
infrastructure given the attack strategy T and the defense
strategy S. An intentional attack in the resilient region (i.e.,
T ≤ �Nqc�) turns out to be in vain since it fails to sabotage
enough nodes to paralyze the entire network owing to the
network resilience. In other words, an adversary has to sabo-
tage at least �Nqc� nodes to disrupt an IoT infrastructure with
nonzero probability. In case that �Nqc� ≤ T ≤ �η′� − 1, the
adversary is able to disrupt the entire network without being
detected by the fusion center. It is observed that the increase in
T leads to the decrease in the disruption probability since the
attack can be detected with higher probability as T increases.
On the other hand, decreasing S may enhance the precision
of detecting intentional attacks. However, as the attack and
defense strategies are not known by its opponent, the outcome
of the game equilibrium therefore offers insightful analysis on
the robustness of IoT.

Using game theory, the interactions between the adversary
and the defender can be formulated as a two-player, zero-sum,
matrix game, where the adversary’s strategy is to attack T
nodes with the highest degree and the defender’s strategy is
to keep S nodes with the highest degree under surveillance.
The payoff of one player is set to be the opponent’s cost as
defined in (6). The payoff of the matrix game is specified by
a payoff matrix P ∈ R

N×N , where the entry PTS denotes
the payoff of the defender when the adversary’s strategy is
T and the defender’s strategy is S. With the network cost
defined in (6) and the detection capability of every node (PD),
we denote TD ∼ BIN(T, PD) as a binomial random variable
representing the number of nodes detecting the attack when T
nodes are under attack. An attack is in vain if the adversary
sabotages less than �Nqc� nodes because the network is still
connected in percolation sense, while the attack is effective
if �Nqc� ≤ T ≤ �η′� − 1, where the fusion center fails to

detect the attack prior to the network disruption. Regarding the
randomized decision rule, when T ≥ �Nqc� and TD = �η′�,
with (6), the payoff is

C̃ = 1 · εP (TD = �η′�)− 1 · (1− ε)P (TD = �η′�)
= (2ε− 1)

(
T

�η′�
)
P

�η′�
D (1− PD)T−�η′�. (23)

Moreover, given T ≥ max{�Nqc�, �η′�}, the payoff becomes

Ĉ = 1 · P (TD ≥ �η′�+ 1)− 1 · P (TD ≤ �η′� − 1) + C̃

= 1− F (�η′�;T, PD)− F (�η′� − 1;T, PD) + C̃

= 1− I1−p(T − �η′�, �η′�+ 1)

−I1−p(T − �η′�+ 1, �η′�) + C̃. (24)

From (22), the detection threshold η′ is a function of the num-
ber of nodes under surveillance (S), i.e., η′(S). Consequently,
we write the payoff matrix P as

PTS =

⎧⎪⎪⎨⎪⎪⎩
1, if T < �Nqc�
−1, if �Nqc� ≤ T ≤ �η′(S)� − 1

Ĉ, if T ≥ max{�Nqc�, �η′(S)�}.
(25)

Due to the fact that there exists at least one (mixed strategy)
Nash equilibrium in a finite matrix game such that no players
can be better off by a unilateral change in their strategies,
and the Nash equilibria are equivalent in the sense that
the payoffs are identical [32], denoting t = (t1, . . . , tN ) and
s = (s1, . . . , sN ) as the probability distribution on the strategy
of the adversary and the defender, respectively, the adversary
manages to choose an optimal t to minimize the defender’s
payoff, which is the solution of the optimization problem in
nonnegative orthant

minimize max
s=1,...,N

(PTrt)s

subject to t 
 0, 1Trt = 1 (26)

where (·)Tr denotes matrix transpose and 
 denotes com-
ponentwise inequality. As proved in [61], the optimization
problem in (26) is equivalent to the linear programming
problem

minimize v

subject to t 
 0, 1Trt = 1

PTrt � v1 (27)

which is particularly suitable in analyzing the network robust-
ness of IoT having tremendous nodes owing to its computation
efficiency. Therefore, the solution of (27) v∗ is the optimal
expected payoff of the defender for the attack and defense
zero-sum game, and the optimal expected payoff of the adver-
sary is −v∗. More importantly, v∗ quantifies the capability of
the proposed defense mechanism subject to intentional attacks,
and therefore, it can be used as a performance benchmark for
network robustness. As shown in Fig. 5, the optimal expected
payoff v∗ of the defender increases with the critical value
qc, which is quite reasonable since the adversary needs to
pay more efforts to disrupt the network if IoT infrastructure
holds stronger resilience. Moreover, the adversary benefits
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Fig. 5. Optimal expected payoff of the zero-sum game with respect to qc
with different (PD, PF ) configurations. N = 300 and ε = 0.5. Low critical
value and weak detection capability indeed benefit the adversary in the sense
that the adversary has more chance to win this game.

from weak detection capability (low PD) if the local detection
fails to distinguish the occurrence of attack.

In practice, the proposed fusion-based defense mechanism
can be implemented in real-time via multiplicative weights
update methods [62], [63] by updating the defense strategy
according to the system loss of the previous stage. In other
words, the Nash equilibrium in (26) can be achieved within ε
precision of v∗ in O(logN/ε2) stages, which is particularly
preferable to large-scale IoT since the number of stages
required to reach the game equilibrium within ε precision
scales with logN . Note that in addition to the percolation-
based connectivity, other connectivity measures can also be
used to define qc for game-theoretic analysis. For instance,
we can define qc as the least fraction of node removals such
that the remaining largest network size is no more than 10%
of its original network size.

VIII. PERFORMANCE EVALUATION

For performance evaluation, the network robustness is quan-
titatively analyzed by solving the linear programming problem
(27) with respect to the specified network parameters such
as qc, PD, and PF . The solution provides nontrivial optimal
attack/defense strategies for the adversary and the defender,
and the game equilibrium suggests that no player’s payoff can
be increased by unilaterally changing its own strategy, and
therefore, the outcome of the game equilibrium turns out to
be a stable network robustness measure, and it serves as a
reliable benchmark for performance evaluation. Note that in
reality, the critical value for network disruption can be either
obtained by performing experimental trials on the collected
network data or using complex network theory to identify the
collective network features such as the skewness of the power-
law degree distribution of the Internet-oriented network. In
this section, both synthetic network models and parameters
collected from real-world dataset will be investigated for
performance comparisons.

Fig. 6. Optimal expected payoff of the zero-sum game with respect to PD

under different qc of the Internet-oriented network. N = 400, PF = 0.01,
ε = 0.5, and dN = 5, 2, and 1.

Incorporating the concepts of network resilience in Section
IV-D and the fusion-based defense in Section VI, in this
section, we investigate the outcome of the attack and defense
game at the game equilibrium as discussed in Section VII,
where both the adversary and the defender aim to maximize
their own payoffs. By formulating the intentional attack and
fusion-based defense as a zero-sum game, the attack incurs
severe threats on IoT if the optimal expected payoff v∗ < 0,
otherwise the defense is regarded as efficacious, since v∗ > 0
implies that the defender has higher chance to win the game.
The synthetic complex network models and the empirical
network data extracted from Internet router-level map and Eu-
ropean power grid are used to evaluate the robustness of IoT.

Regarding an Internet-oriented network, since most of the
real-world power-law distributed networks have the degree
exponent 2 ≤ α ≤ 3 [17], [18], in Fig. 6, we demonstrate
the effectiveness of the fusion-based defense mechanism when
α = 2.5 with respect to the local detection capability, where
the critical value qc is obtained from (8) to (10) given the
minimum degree dN . The payoff of the defender increases
with the local detection capability owing to better precision of
the attack inference at the network level, and it asymptotically
approaches to 1 when PD = 1, suggesting that the attack is in
vain when the detection probability of local node is high. In
addition, lower dN contributes to smaller qc and v∗, since the
network is more vulnerable to intentional attacks. Nonetheless,
the fusion-based defense still takes advantage (v∗ > 0) of such
fragile network structure even with weak detection capabil-
ity and small critical value to sustain the percolation-based
connectivity.

Similar results can be found in a CPS-oriented network as
shown in Fig. 7. The critical value qc is obtained from (14)
given the exponential exponent β. The payoff of the defender
also increases with the local detection capability and v∗ → 1
as PD → 1. Larger exponential exponent β provides better
defense performance since E[D0] = β suggests that a node
has more links to other nodes and hence the robustness of
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Fig. 7. Optimal expected payoff of the zero-sum game with respect to PD

under different qc of the CPS-oriented network. N = 400, PF = 0.01, and
ε = 0.5.

Fig. 8. Optimal expected payoff of the zero-sum game with respect to PD

and the empirical data collected in [22] and [51]. PF = 0.01 and ε = 0.5.
The topological map of the Internet contains 6209 nodes and 12 200 links
with E[D0] = 3.4. The EU power grid contains 2783 nodes and 3762 links
with E[D0] = 2.7.

the network is enhanced. The results of these two networks
also show that the proposed fusion-based defense mechanism
indeed provides reliable and efficient protection against inten-
tional attacks and is able to enhance the network robustness
by acquiring minimum feedbacks from local nodes.

Following the empirical network data collected in [22] and
[51], we analyze the performance of the fusion-based defense
mechanism on the Internet router-level topology and the Euro-
pean power grid as the foundation of future IoT infrastructure.
As shown in Fig. 8, the Internet is observed to be more
vulnerable to intentional attacks due to the existence of hubs
(nodes with much higher degree) [19] and relatively small
critical value for percolation-based connectivity [22], while
the defender is able to prevent the network from disruption

Fig. 9. Optimal expected payoff of the zero-sum game with respect to PD

and the same mean degree. N = 400, PF = 0.01, and ε = 0.5. The mean
degree of the Internet-oriented network and the CPS-oriented network is set to
be the same for fair comparison. The power-law distributed network is shown
to be more vulnerable to intentional attacks, especially when the mean degree
is small.

even under weak detection capability. When PD → 0.1, the
fusion-based defense mechanism tends to lose its advantage
for the Internet, suggesting that the adversary may disrupt
the network if the local detection capability is inherently
awkward.

To make a fair comparison between these two network
configurations, we set the same mean degree with the as-
sumption that dN = 1 in the large-scale network limit, i.e.,
E[D0] =

α−1
α−2 = β from their degree distributions. The critical

values for network disruption can be evaluated from (10)
and (14), and therefore the corresponding game payoffs in
(25) are specified. The mean degree of a network is closely
related to the network construction cost since the degree of a
node represents the number of the physical connections (e.g.,
power lines). As shown in Fig. 9, when E[D0] = 3.4, both
the Internet-oriented network and the CPS-oriented network
have their payoff v∗ > 0. When PD is small, the Internet-
oriented network is more vulnerable to intentional attacks
than the CPS-oriented network owing to the existence of
nodes with extremely high degree, which is consistent with
the observations of (1). More interestingly, when the mean
degree is halved, no significant impacts have been imposed
on the CPS-oriented network, whereas the Internet-oriented
network suffers severe performance degradation since the
fragility of the network allows the adversary to sabotage less
nodes with the highest degree to disintegrate the network
without being detected. It is worth mentioning that the op-
timal expected payoff is not restrictive to any specific types
of networks, and it only depends on the network structure
(i.e., the critical value qc) and the associated detection ca-
pability PD and PF , which provide useful guidance and
ubiquitous performance benchmarks toward designing a ro-
bust network topology and defense mechanisms against fatal
attacks.
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IX. CONCLUSION

To tackle the damage caused by intentional attacks on an
IoT infrastructure entrenched with complex network structure,
a fusion-based defense mechanism is proposed for the attack
inference at the network level by means of optimal data
fusion approaches. The proposed mechanism requires only
minimum (one-bit) local decision of each node to reduce
the additional communication overheads and nodal defense
module installments toward efficient defense framework in
IoT operations. The vulnerability of IoT under intentional
attacks is investigated by relating the network resilience to the
percolation-based connectivity. A zero-sum game is introduced
between the adversary and the defender, and the outcome
of the game equilibrium is used to evaluate the network
robustness of the proposed defense mechanism.

We specifically analyze the critical values of the Internet-
oriented network and CPS-oriented network to sustain con-
nectivity in percolation sense as these two networks possess
distinct topological features and they are very likely to be the
foundation of future IoT infrastructure. The Internet-oriented
network is shown to be more vulnerable to intentional attacks
than the CPS-oriented network owing to the existence of
nodes with relatively high degree. The results on the synthetic
network models and empirical data show that the proposed
defense mechanism can effectively enhances the network ro-
bustness and counter the damage caused by intentional attacks,
even with weak local detection capability and the inherently
fragile nature of the network structure such as the power-
law distributed networks. This paper, therefore, provides a
general theoretic framework for network robustness analysis
and enhancement in large-scale networks, in particular to IoT,
CPS, and M2M communications.
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